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ATTITUDE INTERPOLATION 

Sergei Tanygin* 
Interpolation may be required for attitude data when re-
propagation is either impossible or impractical. Nonlinearity of 
kinematics and potential aliasing between revolutions are among 
the unique challenges presented by the attitude motion. 
Selections of the reference frame and attitude parameterization 
become very important. It is possible to apply standard polynomial 
interpolation techniques to the attitude data and, also, include the 
angular velocity data in order to achieve a better accuracy and to 
reduce potential for aliasing between revolutions. It is also 
possible to employ interpolated polynomial trajectories for fixed 
duration near optimal maneuver design and to achieve additional 
optimization for spinners.  

INTRODUCTION 

A need for interpolation may generally arise given a set of grid points, where each 
point contains corresponding values of independent and dependent variables. 
Interpolation is one of the ways to produce values between the points in the absence of 
other information relating dependent and independent variables. Interpolation also does 
that while ensuring that values at the grid points are matched.  Interpolation methods vary 
according to what type of functions they use, how many grid points they use and how 
many derivatives they can take advantage of at each point. One of the simplest and most 
common types of functions used for interpolation is a polynomial. Table 1 includes a 
classification of polynomial interpolation methods according to the number of grid points 
and derivatives.1  

TABLE 1 POLYNOMIAL INTERPOLATION METHODS 

 Two points >Two points 

No derivatives Linear Lagrange Lagrange 

1st derivatives 1st Order Taylor or 2-
point Osculating 

Osculating 

1st and higher derivatives Taylor Hermite 
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In practice, ephemeris interpolation has been used extensively when position and 
optionally velocity data are available at a discrete set of times. The data may originate 
from simulations or from telemetry and estimation. Re-propagation of ephemeris can be 
an alternative to interpolation, but it requires knowledge of force models. Even if force 
models are known, the amount of extra data and computations may become unnecessary 
when desired accuracy can be satisfied with interpolation. Conceptually, attitude 
interpolation parallels ephemeris interpolation: it enables relatively fast and accurate 
computation of attitude and angular velocity at any time spanned by a discrete set of 
points. The differences come from non-linear nature of attitude composition operations 
and attitude kinematics. Results of interpolation will depend on both attitude 
parameterization and reference frame selected for data points. The most straightforward 
approach calls for independent interpolation of each element of parameterization. At the 
same time, this places significant restrictions on types of acceptable parameterizations: 
attitude parameterization becomes unsuitable for interpolation if it imposes constraints on 
its elements or if it exhibits discontinuities or singularities.  

 
TABLE 2 ATTITUDE PARAMETERIZATIONS 

 Constraints Singularities Discontinuities 

Direction cosine 
matrix 

X   

Unit quaternion X   

Cayley-Klein 
parameters 

X   

3 subsequent angle-
axis rotations 

 X  

Eigen-axis and 
function of eigen-
angle 

 X X 

• Rotation 
vector 

 X  
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According to Table 2, these restrictions eliminate from the consideration every 
possible parameterization. However, a closer examination of the rotation vector 
parameterization reveals that its singularity at the origin can be easily resolved. The 
general definition and rotation vector kinematics are described below:2 
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where q  is the four-parameter vector representing the attitude in terms of the unit 
quaternion, ω  and ω&  are the body angular velocity and acceleration in the body fixed 
frame,  φφφ ˆ=  is the rotation vector with the direction φ̂  along the eigen-axis of rotation 
relative to the reference frame and with the magnitude φ  equal to the eigen-angle of 
rotation. However, near the origin, the definition is simplified to 
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and the kinematical relationships reduce to direct correspondence of the rotation vector 
velocity to the body angular velocity and the rotation vector acceleration to the body 
angular acceleration:  

φω &→ ,         (5) 
 

φω &&& → .         (6) 

These results are important not only for interpolation, but also for design of near optimal 
attitude maneuvers later in this paper. Finally, note that norm of the rotation vector 
corresponds to the eigen angle, which, in turn, represents a “distance” measure in attitude 
space.  
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ROTATION VECTOR INTERPOLATION 

A method for attitude interpolation using rotation vector parameterization is 
presented in this section. The method combines useful properties of this parameterization 
described in the introduction with standard polynomial interpolation techniques. The 
method contains the following steps: 

1. Find N attitude grid points centered around time of interest 

2. Redefine these N points with respect to attitude of grid point nearest in time 

3. Convert resulting points to rotation vector parameterization 

4. Perform N point Lagrange interpolation on each rotation vector element 
independently 

5. Convert resulting rotation vector to desired attitude parameterization 

The procedure outlined above does not require knowledge of the angular velocity: 
Step 4 is performed for the attitude alone. The angular velocity can be interpolated 
separately by also using Lagrange interpolation provided that angular velocity grid points 
are available. However, de-coupling the attitude from the angular velocity ignores 
kinematical relationship between the two and may result in a significant loss of accuracy. 
Note that interpolation of rotations presents a special challenge: without the angular 
velocity data it may not be possible for the interpolation to distinguish between attitudes 
separated by complete revolutions, the effect often referred to as aliasing of revolutions. 
This effect may ultimately result in a sign error causing the apparent interpolated motion 
to proceed in the direction opposite to the actual motion. These problems provide strong 
arguments for incorporating the angular velocity data into the attitude interpolation. This 
can be done by replacing the two separate Lagrange interpolations, one for the attitude 
and the other for the angular velocity, with the single osculating interpolation that 
operates on the rotation vector and its first derivative. The derivative needs to be related 
to the angular velocity via rotation vector kinematics (Eq.(2)). Hence, the interpolation 
method incorporating angular velocity contains the following steps: 

1. Find N attitude and angular velocity points centered around time of interest 

2. Redefine these N points with respect to attitude of point nearest in time 

3. Convert resulting attitude and angular velocity points to rotation vector 
parameterization and its velocity 

4. Perform N point osculating interpolation on each pair of rotation vector 
element and its derivative independently; each element of rotation vector 
velocity is interpolated using derivative of interpolating polynomial 
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5. Convert resulting rotation vector and its velocity to desired attitude 
parameterization and angular velocity 

Note that N-point Lagrange interpolation employs polynomials of degree N-1, 
whereas N-point osculating interpolation employs polynomials of degree 2N-1. It is 
instructive to consider 2-point interpolations in more details in order to gain a better 
insight into the construction of interpolating polynomials as well as in order to establish 
the mathematical foundation for the next section.  

2-point osculating interpolation employs cubic polynomial that passes between 
two grid points leaving and arriving at specified slopes in specified time (Fig. 1). Without 
loss of generality, the time of the first grid point can be set to 0, so that the second grid 
point simply occurs at the time elapsed between the two points, T, and so that the time 
along the polynomial progresses between 0 and T.  

 

 

Figure 1 Cubic polynomial p(t) in 2-point osculating interpolation 

2-point osculating cubic polynomial is constructed as a linear combination of four 
other cubic polynomials. These polynomials, often referred to as basis, have coefficients 
that depend only on the time elapsed between the grid points and do not depend on either 
values or slopes at the two grid points. Each of the four basis polynomials is then 
multiplied by one of four constants: two values and two slopes at the grid points. These 
four scaled polynomials added together compose the 2-point osculating cubic 
polynomial. Hence, the interpolation of the rotation vector )(tφ  and its derivatives )(tφ& , 

)(tφ&&  results in cubic, quadratic and linear polynomials, )(tφ , )(tφ&  and )(tφ&& , respectively. 
All of them can be formulated as a linear combination of the four other polynomials in the 
vector form:   

)()()()()( 00 trtptrtpt TT TT00 φφφφφ && +++= ,     (7) 
)()()()()( 00 trtptrtpt TT

&&&&&&&
TT00 φφφφφ +++= ,     (8) 

)()()()()( 00 trtptrtpt TT
&&&&&&&&&&&&

TT00 φφφφφ +++= ,     (9) 
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where 0φφ =)0( , 0φφ && =)0( , Tφφ =)(T , Tφφ && =)(T  and 
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As stated above, the essential properties of 2-point osculating interpolation are 
0φφφ == )0()0( , 0φφφ &&& == )0()0( , Tφφφ == )()( TT , Tφφφ &&& == )()( TT . In turn, these 

properties can be deduced from observing the following properties of the basis 
polynomials:  
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The construction of 2-point osculating polynomials can be somewhat simplified if the 
attitude of one of the grid points is used as the reference frame. For example, re-defining 
both grid points to be relative to the attitude of the first point, makes that point the origin 
and makes its rotation vector parameterization a zero vector, 0φ0 = . Thus, 2-point 
osculating polynomials become a linear combination of only three basis polynomials. 
Another benefit of placing the origin at one of the grid points is the simplification of 
kinematical relationships of the rotation vector velocity and acceleration with angular 
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velocity and acceleration: near the origin, the the rotation vector velocity and acceleration 
approximately become the angular velocity and acceleration, respectively (Eqs.(5,6)). 

This and previous sections presented the attitude interpolation methods that utilize 
the attitude and, optionally, the angular velocity data. The angular acceleration along the 
interpolating polynomials was also formulated here, but its significance is the subject of 
the next section.    

  

NEAR OPTIMAL FIXED DURATION MANEUVER 

Given an attitude maneuver with specific duration and specific initial and target 
attitudes (and angular velocities), minimizing the overall torque spent during the 
maneuver is certainly one of most desirable objectives. The challenge lies in relating the 
shape of the attitude trajectory to the torque along that trajectory: both kinematics and 
dynamics must be accounted for and they are generally non-linear. Hence, one reason to 
be interested in the angular acceleration along the interpolating polynomial is because it 
relates to the rotation vector acceleration on one side and to the body fixed torque on the 
other side. The 2-point osculating polynomial using rotation vector parameterization 
quickly emerges as a good candidate for the desired trajectory because of its two 
properties: 

1. Trajectory passes between initial and final attitudes leaving and arriving with 
specified angular velocities in specified time 

2. Trajectory is least curved in rotation vector parameterization 

The first property was fully discussed in the previous section. The second property comes 
from using calculus of variations to minimize the following objective functions: 

3,2,1,)(
0

2 == ∫ idtJ
T

ii φφ && ,       (22) 

where 1ℜ∈iφ  is the ith element of the rotation vector φ . The Euler-Lagrange equation4,5 
yields the following condition for iφ : 

3,2,1,0
....

=≡ iiφ ,        (23) 

which is clearly satisfied if iφ  is any cubic polynomial.6 Hence, the 2-point osculating 

polynomials iφ  developed in the previous section as part of [ ]Tφ 321 φφφ= minimize 
the objective functions (Eq.(22)):  
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This is the first step towards minimization of the ultimate objective function: 

∫=
T
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where 3ℜ∈M  is the applied torque. 

The results below follow directly from the properties of rotation vector kinematics 
presented in the previous sections (Eqs.(5,6)): 
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In other words, the rotation vector acceleration approaches the angular acceleration under 
either one of the following three conditions: 

1. Trajectory is small 

2. Trajectory is slow 

3. Trajectory is close to maintained pure spin 

This also means that the objective functions based on the angular acceleration 
components are approximately minimized under the same conditions: 
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where 1, ℜ∈ii ωω &&  and where iω&  is computed as part of the angular acceleration vector 

[ ]Tω 321 ωωω &&&& =  along the 2-point osculating rotation vector trajectory.  

The next step towards minimization of the applied torque considers the time rate 
of change of the rigid body angular momentum in the body fixed frame, 3ℜ∈ωI & , where 

330 ×ℜ∈=< IIT  is the body fixed inertia matrix. The following relationship can be 
established between the objective functions dealing with every component of the angular 
acceleration, iω& , and the objective function dealing with ωI & : 
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2 min3,2,1,min ωIωI T &&&
&& ωω
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 9 

where the relationship is, of course, preserved in any body fixed frame, but is particularly 
evident in the principal frame.  

The final step must include attitude dynamics in order to relate the time rate of 
change of the rigid body angular momentum in the body frame to the applied torque: 

MHωωI =×+& ,        (31) 

where 3ℜ∈H  is the body total angular momentum in the body fixed frame, which 
includes the angular momentum of the rigid body itself and the internal angular 
momentum due to parts moving with respect to the rigid body. The effect of cross 
coupling, Hω× , can be negligible under either one of these two conditions:   

1. Trajectory is slow 

2. Trajectory is close to pure spin about one of principal axes and internal 
angular momentum, if any, is close to same axis 

This means that under these conditions, the ultimate objective function (Eq.(25)) is 

approximately minimized whenever ( )∫=
T

dtJ
0

)( ωIωIωI T &&&  is minimized. 

In summary, under the sets of kinematical and dynamical conditions, the 
maneuver trajectory defined by the 2-point osculating polynomial in the rotation vector 
parameterization approximately minimizes the overall magnitude of the torque applied 
during the maneuver. While these conditions are satisfied for a large group of maneuvers, 
e.g. spin-up/-down, slow large angle, etc., the most challenging agile large angle 
maneuvers may become far from optimal when using the proposed trajectory. The rest of 
this section presents trajectory modifications that may improve its optimality even for 
agile large angle maneuvers.  

The conditions imposed by the attitude dynamics are especially difficult to relax, 
because of the significant and highly non-linear contribution of the cross coupling during 
agile maneuvers. However, because of this difficulty, the cross coupling is often 
compensated for agile spacecraft via the closed-loop feedback linearization in order to 
ensure a better predictability of attitude trajectories. Accepting this penalty on the applied 
torque leaves only the kinematical conditions to be relaxed. The attitude trajectories that 
minimize )( ωI &J  will be referred to as kinematically optimal in the rest of this paper. 

Consider the maneuver trajectory defined in the rotation vector parameterization 
relative to the attitude of the initial point using the 2-point osculating interpolation. As 
stated in this and previous sections, this selection of the reference frame makes the 
trajectory depart from the origin, which means that, at this point, the rotation vector 
velocity and acceleration are equal to the angular velocity and acceleration, respectively. 
If this equivalence were maintained throughout the trajectory, the trajectory would be 
kinematically optimal, but, generally, this is not the case. Generally, the linear 



 10 

progression of the rotation vector acceleration throughout the trajectory does not 
correspond to the linear progression of the angular acceleration. The latter can become 
more and more divergent and curved as the trajectory moves further away from the 
origin, because the effect of kinematical non-linearity can become more and more 
pronounced. One of the most intuitive approaches to countering this effect is to somehow 
introduce periodic corrections to the interpolation polynomials. For example, while the 
same target attitude and angular velocity are sought, the entire interpolation problem can 
be re-cast using the current trajectory point as the initial point and using the remaining 
maneuver time to update interpolation polynomials (Fig. 2). This procedure can be 
repeated as often as necessary depending on the significance of the non-linear 
kinematical effect. The method of periodic corrections becomes effectively a closed-loop 
guidance method with periodic updates. For example, the rotation vector, its velocity and 
acceleration during the period of Ttt ≤′≤≤0  are governed by the following set of 
equations:  

)()()()( 0 trtptrt TT TT0 φφωφ &++= ,      (32) 
)()()()( 0 trtptrt TT

&&&&&
TT0 φφωφ ++= ,      (33) 

)()()()( 0 trtptrt TT
&&&&&&&&&

TT0 φφωφ ++= ,      (34) 

where all terms multiplied by 0≡0φ  are removed and where 0φ&  is replaced with 0ω , 
because the two are equal at the origin. At time t′  the problem can be re-cast: the target 
rotation vector and its velocity are redefined relative to )(t′φ  resulting in Tφ′  and Tφ′& , 
respectively; the basis polynomials are rebuilt using the remaining maneuver time of 

tT ′−  instead of T  (all updated polynomials are indicated by “prime” in the next set of 
equations); the original angular velocity 0ω  is replaced with its current counterpart, 

)(t′′=′ ωω0 . Hence, the following set of equations governs the rotation vector, its velocity 
and acceleration after this correction and until the end of the maneuver or until the next 
correction: 

)()()()( 0 trtptrt TT ′′+′′+′′=′ TT0 φφωφ & ,      (35) 
)()()()( 0 trtptrt TT ′′+′′+′′=′ &&&&&

TT0 φφωφ ,      (36) 
)()()()( 0 trtptrt TT ′′+′′+′′=′ &&&&&&&&&

TT0 φφωφ .      (37) 

Note that the time t  in the equations above is also reset: it starts at 0 and, in the absence 
of other corrections, continues until the end of the maneuver at time tT ′− .   

Recall that, in general, more frequent corrections result in smaller contributions 
from the non-linear kinematics and, thus, result in less curved angular velocity and 
acceleration trajectories. Therefore, it is natural to seek a transition from periodic 
corrections to continuous correction throughout the trajectory. The transition becomes 
clear if the angular acceleration at the initial point of any of the periodic corrections is 
examined: 
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This equation can be rewritten as a continuous function of the original time t  assuming 
that the trajectory includes an infinite number of corrections, each applied over an 
infinitely small period of time. In other words, any point on this trajectory can be 
considered the initial point of some correction. The resulting equation after 
straightforward re-grouping takes form of the closed-loop guidance law. The law 
specifies the angular acceleration at any point on the trajectory as a function of the 
current time, total maneuver duration, the current attitude and angular velocity as well as 
the target attitude and angular velocity: 

[ ]( )
( )2

)()(2)(32)()(
tT

tTttttt
−

−+−
== TT φωφφω

&&&& ,    (39) 

where )(tTφ  and )(tTφ&  are the target rotation vector and its velocity relative to the 
current attitude along the trajectory. The apparent singularity in Eq.(39) as Tt →  is 
resolved, because its numerator becomes proportional to ( )2tT −  just as Tt → , so that  

constω =
→

)(lim t
Tt

& .        (40) 

In practice, as Tt → , the guidance law may be turned off and replaced with a simple 
attitude control law tracking the target attitude and angular velocity. The guidance law 
uses continuous local linearization and effectively “slides” interpolating polynomials 
along the trajectory towards the target (Fig. 2). The resulting trajectory reaches the target 
at the specified time in a near kinematically optimal manner.  

The importance of the appropriate selection of the reference frame for 
interpolation and for maneuver design is clearly evident. The next section demonstrates 
the case when not only the initial attitude, but also the target attitude of the maneuver is 
utilized as the reference frame during the maneuver design. 
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Figure 2 “Sliding” 2-point osculating interpolation of p(t) 

 

CLOCK-ANGLE OPTIMIZATION FOR SPINNERS 

Consider the attitude trajectory for which the initial point, the target point or both 
specify only the angular velocity vector and its orientation in some reference frame. For 
example, if the target trajectory point only specifies the angular velocity, the target 
attitude itself is not fully defined and possesses an additional degree of freedom: the 
clock-angle Tα  about the angular velocity vector (Fig. 3).  

 

 
Figure 3 Target clock-angle for spinners 

Additional optimization may be performed with respect to this parameter, Tα , 
assuming that the attitude trajectory takes the form of the 2-point osculating polynomial 
described in the previous sections. The manner in which the clock-angle enters the cost 
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function strongly depends on the selection of the reference frame for the interpolated 
rotation vector. In general, the composition operation in the rotation vector 
parameterization is non-linear and includes trigonometric functions. However, the 
deliberate selection of the inertial reference frame that aligns one of its axes, e.g. the third 
axis, with the target angular velocity can linearize the composition operation and limit the 
clock-angle dependency to only one component of the rotation vector, e.g. 3φ  (Fig. 4).  

 
 

Figure 4 Clock-angle variation 

Then, the resulting cost function for the parametric optimization is 
straightforward:  
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and so is the solution to the parameter optimization problem4,5 )()(min TpTp JJ
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where 03φ  and 03φ&  are third components of the initial rotation vector and its velocity 
relative to the inertial reference frame that aligns its third axis with the target angular 
velocity; Tα&  is the magnitude of the target angular velocity in that same frame. Note that 
in that frame both the angular velocity and the rotation vector velocity are aligned with 
the third axis. As expected, the optimal clock-angle value Tα  is the one that minimizes 
curvature of the rotation vector velocity, which ultimately leads to the reduction by one 
of the polynomial degrees for the third component of the rotation vector, its velocity and 
acceleration (Fig. 5):  

( )
T

ttt T 2
)(

2

0303033 φαφφφ &&& −++= ,      (43) 

( )
T
tt T 03033 )( φαφφ &&&& −+= ,       (44) 

Tα&

Tα
















=
















=

Tα&
& 0

0
)0(,

0
0
0

)0( TT φφ















=
















=

T

T

T

T

α
α

α
α

&

& 0
0

)(,0
0

)( TT φφ

Parameter 

Variation 

Spin 
Tα&

Tα0
Spin 



 14 

T
t T 03

3 )( φαφ
&&&& −

= .        (45) 

 

 

 

Figure 5 Reduction of curvature with optimal clock-angle 

EXAMPLES 

This section illustrates the performance of the closed-loop guidance law. The 
following conditions are defined for the maneuver: 

• Initial quaternion and angular velocity:  

[ ]Tq 0100)0( =s  

[ ]Tω 0.05500)0( =s  deg/s 

• Target quaternion and angular velocity: 

[ ]T)q( 0.4936-0.4139-0.66210.3829180 =s  

[ ]T)ω( 0.02260.6947-0.314-180 =s  deg/s 

Tα

T

)(3 tφ

t
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• Agile maneuver with same target quaternion, but higher target angular 
velocity: 

[ ]T)ω( 0.246.934-3.11-180 =s  deg/s 

The kinematical performance measure related to the original cost function is 
defined as follows: 

∫=
t

dtJr
0

)( τωωT && .        (46) 

The error eigen-angle is computed relative to the frame aligned with the target 
attitude at the final time. Similarly, the error for the rotation vector velocity )(tφ&  is 
computed relative to the frame aligned and rotating with the target frame at the final time. 
The error for the angular velocity )(tω  is computed as a direct difference between its 
current vector and the target vector. As expected, all of the errors reach zero at the final 
time and the difference between the errors in the rotation vector velocity and the angular 
velocity tend to become equivalent as the attitude trajectory approaches the target 
(Figs.6-13). Also, as expected, the agile maneuver exhibits additional variations in the 
trajectories (Figs.10-13).  It is interesting to note that, despite these initial variations, half 
way into the maneuver, the rotation vector velocity and the angular velocity (Fig. 12) 
become very regular and become shaped much like those of the slow maneuver (Fig.8). 

 

Figure 6 Performance measure 
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Figure 7 Error eigen-angle relative to target attitude 

 

Figure 8 Error magnitudes in terms of angular velocity and rotation vector velocity 
relative to target attitude 
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Figure 9 Motion of Z-body axis and angular velocity direction 

 

 

Figure 10 Agile maneuver performance measure 
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Figure 11 Agile maneuver error eigen-angle relative to target attitude 

 

Figure 12 Agile maneuver error magnitudes in terms of angular velocity and 
rotation vector velocity relative to target attitude 
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Figure 13 Agile maneuver motion of Z-body axis and angular velocity direction 

 

 

CONCLUSIONS 

The paper demonstrated that the attitude interpolation can be implemented using 
standard polynomial interpolation techniques and the rotation vector parameterization. 
The angular velocity data can be incorporated in the attitude interpolation improving the 
accuracy and removing possible aliasing of multiple revolutions.  

The paper also demonstrated how the optimality of acceleration along 2-point 
osculating polynomials can be utilized in the design of near-optimal fixed duration 
maneuvers. The near-kinematically optimal closed-loop guidance law was designed 
based on successive and continuously updated interpolations.  

The paper specifically addressed maneuver design for spinners, for which 
additional optimization is possible if the target clock-angle of the spin can be adjusted. 
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