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EPHEMERIS REQUIREMENTS FOR 
SPACE SITUATIONAL AWARENESS 

Daniel L. Oltrogge*, T.S. Kelso*, and John H. Seago† 

Increasing international cooperation in the areas of orbital collision avoidance 
and electro-magnetic interference mitigation has driven the exchange of satellite 
ephemerides to support Space Situational Awareness, threat detection, and 
avoidance. To be useful, ephemerides must conform to certain specifications in 
order to ensure that the intended precision of these analyses is achieved. This 
paper examines the accuracy of various interpolation methods as a function of 
ephemeris step size and ephemeris numerical precision for a variety of orbital 
regimes. 

INTRODUCTION 

As orbital operations and the background space debris population have increased, orbital Col-
lision Avoidance (CA) and Radio Frequency Interference (RFI) mitigation have become increas-
ingly important to space operators. This has successfully led to a number of standards and prac-
tices governing the exchange of orbital information among operators, most notably the joint effort 
of CCSDS/ISO collaborative effort to create CCSDS 502.0-B-2 “Orbit Data Messages.”1 Addi-
tionally, commercial operators are jointly addressing the collision and RFI threats by notifying 
each other of RFI events and by performing predictive threat analyses. 

Spacecraft operators typically have the best positional and attitudinal histories and predictions 
for their satellites. Such operators tend to have very detailed models for solar-radiation pressure, 
know their mass and drag-relevant cross-sectional areas, know when their maneuvers are to oc-
cur, and can tailor their gravity and perturbations modeling to the specific orbital environment 
their satellite occupies. Optical and/or radar surveillance are necessary to maintain situational 
awareness when operator-provided ephemerides are unavailable; however, an extrapolation of 
historical observations is unable to predict future spacecraft maneuvers. 

Owner-supplied ephemerides are snapshots in time of where spacecraft are predicted to be. 
The accuracy of such predictions depends upon a complex combination of factors, including: op-
erator observation precision and accuracy, operator orbit-determination method precision and ac-
curacy, operator integration method, interpolation and output precision, operator orbit perturba-
tions fidelity, operator maneuver calibration and performance, operator timing references and 
Earth orientation parameters, recipient timing references and Earth orientation parameters, recipi-
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ent instantiation and rectification of operator ephemeris reference frame, and recipient ephemeris 
interpolation methods, accuracy and numerical precision. 

Note that the recipient has only three aspects in their control to ensure they are getting the best 
positional accuracy out of an operator’s ephemeris. The first two are addressed through careful 
consistency checks with each operator to ensure that timing and reference frames are consistently 
defined. The third addresses the interpolation method, the ephemeris step size, the introduction of 
maneuvers into the ephemeris, and the numerical precision required to produce the desired accu-
racy for such analyses. The impact of each of these aspects will be examined for a variety of or-
bital regimes to help provide the analyst and space operators with guidance for ephemeris crea-
tion and usage. 

BENEFITS OF TRUSTWORTHY SATELLITE POSITIONAL EPHEMERIS 

The operator’s ephemeris is used in both CA and RFI geolocation analyses. One question is, 
“How sensitive are the outcomes of these analyses to errors in satellite position?” For CA, it is 
straightforward to show that the relative position error could range from zero up to the sum of the 
position errors for both satellites. It may be less apparent that the computed time of closest ap-
proach (TCA) will also be affected, since the relative motion geometry and resultant close ap-
proach have likely shifted in time. 

Figure 1. RFI geolocation geometry. Figure 2. RFI geolocation error for mutually-
poor ephemeris errors. 

 

Figure 3. RFI geolocation error for good-v.-poor 
ephemeris errors. 

Figure 4. RFI geolocation error for mutually-
good ephemeris errors. 

For RFI, the relationship between ephemeris error and RFI geolocation error can be illustrated 
via a sample test case. An interfering emitter was placed in the Middle East region as indicated by 
the “interferer” position shown in Figure 1. A signal is relayed by two adjacent satellites, respec-
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tively, with the downlink station located in south-central Europe. The instantaneous geolocation 
solution corresponding to this sample case is shown in Figure 2; the intersection of the time dif-
ference of arrival (TDOA) and frequency difference of arrival (FDOA) Lines of position (LoPs) 
shows where the interfering signal is located if the satellites’ positions are well-known. The blue 
and red areas depict the ribbons of position (RoPs) of uncertainty that exist based on the satellite 
3 σ positional uncertainty of approximately ±20 km in-track, 4 km radial and 2 km cross-track. 
Figure 3 shows the geolocation error uncertainty which results from a combination of the previ-
ous satellite position error uncertainty with the other satellite having a 3 σ positional uncertainty 
of ±500 m in-track, 100 m radial and 50 m cross-track (reflecting typical operator OD ephemeris 
precision and accuracy). Figure 4 shows the solution for the case where both satellite ephemeri-
des are known to typical operator precision. These figures show the dramatic impact that accurate 
and precise ephemerides can have on the RFI mitigation process without having to resort to addi-
tional reference emitters and accumulated overlay of multiple geolocation solutions. 

INTERPOLATION ERROR ALLOWANCES 

The spacecraft operator performs orbit determination on each of its satellites and obtains 3 σ 
positional uncertainties at the ephemeris initial fit epoch. For spacecraft that are tracked frequent-
ly, 3 σ uncertainties could range from fifty to three hundred meters for Geosynchronous Earth 
Orbit (GEO), one hundred meters for Middle Earth Orbit (MEO) and one hundred meters for Low 
Earth Orbit (LEO) regime. Estimated uncertainty is included in the ephemerides provided by the 
external operator, and that uncertainty increases with time. 

The ephemeris interpolation required to perform CA and RFI analyses adds error to the extant 
ephemeris uncertainty. How much error is permissible due solely to interpolation? One can see 
that if the orbit determination process yielded extremely large uncertainties (e.g., 100 km), it is 
needless to constrain the step size to maintain the interpolation error to less than, say, 5 meters. 
Maintaining an unnecessarily small sample size leads to prohibitively large files .  

For the satellites of interest in this study, highly tracked space objects would typically have 
best-case positional accuracies of perhaps 50 meters. Accordingly, 50 meters was selected as an 
overall precision threshold for interpolation-induced error when drawing conclusions on suitable 
step size for externally-supplied ephemerides. Because the inaccuracies introduced by ephemeris 
interpolation would be additive to the original ephemeris uncertainty, as much as 100 meters of 
positional error could exist by the time the interpolated position is used in CA and RFI computa-
tions. 

INTERPOLATION METHODS EXAMINED 

Interpolation accuracy is now examined when applied to GEO, MEO, LEO and geosynchro-
nous transfer orbits (GTO) using several ephemeris interpolation methods, including: 5th-order 
Lagrange2,3,4, and 3rd- and 5th-order Hermitian interpolation5 (both two-point and uniformly-
spaced four-point). The benefit of using a dynamic (uneven) step size ephemeris for high-
eccentricity orbits will also be examined, as governed by the Sundman transformation for regular-
ized time. 

Interpolation Error Metric Approach 

Analytic error expressions exist for the Lagrange and Hermitian interpolation methods and are 
provided in most standard numerical analysis texts.2, 3 However, these expressions depend entire-
ly upon the node placement/spacing and the function values at each node. The highly variable 
nature of the computed error when interpolating in Cartesian space indicates that this error metric 
would have to be repeatedly evaluated for each interpolation condition for all components and 
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then somehow combined on a component-by-component basis to yield the estimated overall posi-
tional error. 

Instead, for each of the interpolation methods and orbit regimes, the interpolated result is di-
rectly compared with a one-second step size “truth” ephemeris (generated using MSISE2000 at-
mospheric drag, solar radiation pressure, third-body perturbations, and a 25×25 EGM96 gravity 
field. In doing so, both the precision and accuracy of the interpolation process are assessed 
(termed “accuracy” for simplicity). The overall distribution of positional error (i.e., truth minus 
the interpolated result) was then captured at every second throughout the one-day duration. The 
nature of the underlying distribution is shown in three dimensions in Figure 5; its two-
dimensional counterpart is shown in Figure 6. 

From these accumulated outcomes, the worst-case and median interpolation errors can be de-
termined. For this study, the ephemeris step size corresponding to the crossing of the adopted al-
lowable 50-meter interpolation error threshold by the worst-case interpolation error trend line was 
then taken as that interpolation method’s performance metric. Although a median (50th percentile) 
or other percentile metric could have been adopted for this study, the maximum error was select-
ed because the immediate goal is to ensure that the interpolation method works well in all cases. 

Figure 5. Sample Distribution of Interpolation Error 
as Function of Ephemeris Step Size (3D) 

Figure 6. Sample Distribution of Interpola-
tion Error as Function of Ephemeris Step 

Size (2D) 

GEO Regime 

The selected interpolation methods were applied to spacecraft in the GEO regime. To 
acknowledge inclination drift trends for GEO orbits, a 5° orbit inclination is selected for this case. 

5th-Order Lagrange Polynomial Interpolation. Lagrange polynomial interpolation is the least 
accurate of the selected interpolation methods, but it does have several distinct advantages: (1) it 
only requires position vectors (velocity, acceleration, and jerk are not required); and (2) although 
it does require n+1 data points for nth-order interpolation, those n+1 points may be non-uniformly 
spaced. For the GEO orbit regime, interpolation error as a function of ephemeris step size is char-
acterized. Figure 7 and Figure 8 show the dependence upon obtained interpolation precision as a 
function of ephemeris step size for spacecraft in the GEO regime. The figures indicate that in or-
der to meet the 50-meter accuracy goal, 5th-order Lagrange polynomial interpolation supports a 
step size not exceeding approximately 2550 seconds (42.5 minutes) for GEO ephemerides. In 
contrast to other interpolation methods that will follow, the distribution of errors in Figure 8 indi-
cates that the maximum error is a less-common occurrence. 
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Figure 7. GEO 5th-Order Lagrange Interpolation 
(Median & Max Error) 

Figure 8. GEO 5th-Order Lagrange Interpola-
tion Error Distribution 

Two-Point, 3rd-Order Hermitian Interpolation. A variety of Hermitian interpolation orders and 
methods (equally-spaced, multi-point, two-point, and various orders) are commonly used in as-
trodynamics. Our first Hermitian method is the simple two-point Hermitian 3rd-order interpolation 
scheme. Because it only requires position and velocity for the two bounding points, this approach 
is well suited for unequally spaced ephemerides. Figure 9 and Figure 10 indicate that in order to 
meet the 50-meter accuracy goal, two-point Hermitian 3rd-order interpolation supports a step size 
not exceeding approximately 1800 seconds (30 minutes) for GEO ephemerides. 

Figure 9. GEO 2-Point 3rd-Order Hermitian In-
terpolation (Median & Max Error) 

Figure 10. GEO 2-Point 3rd-Order Hermitian 
Interpolation Error Distribution 

Two-Point, 5th-Order Hermitian Interpolation. In addition to the position and velocity vector 
ephemeris data required by the Hermitian 3rd-order method, this method requires the addition of 
acceleration vector data. Again, because this method only requires ephemeris data at two bound-
ing points, it is well suited for unequally spaced ephemerides. Figure 11 and Figure 12 indicate 
that for the 50-meter accuracy goal, two-point 5th-order Hermitian interpolation supports a step 
size as large as 8000 seconds (well over two hours) for GEO ephemerides. 
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Figure 11. GEO 2-Point 5th-Order Hermitian In-
terpolation (Median & Max Error) 

Figure 12. GEO 2-Point 5th-Order Hermitian 
Interpolation Error Distribution 

It is concluded that even though this method requires the ephemeris provider to add three addi-
tional parameters to the data (a 30% increase in the number of columns), the actual file size can 
actually shrink by a factor of more than three for the same interpolation accuracy since this inter-
polation method permits substantially larger step sizes for the same interpolation accuracy as 
Hermitian 3rd-order interpolation. 

Four Evenly-Spaced Points, 5th-Order Hermitian Interpolation. While this method only re-
quires position and velocity data similar to the Hermitian 3rd-order method, this method requires 
that the ephemeris points be evenly spaced in time. This makes this method ill-suited for the gen-
eral case where unequally spaced ephemerides may be provided. Figure 13 and Figure 14 indicate 
that for the 50-meter accuracy goal, four-point 5th-Order Hermitian interpolation supports a step 
size as large as 8600 seconds (more than two hours) for GEO ephemerides. 

Figure 13. GEO 4-Point Even Step 5th-Order Her-
mitian Interpolation (Median & Max Error) 

Figure 14. GEO 4-Point Even Step 5th-Order 
Hermitian Interpolation Error Distribution 

As one would expect, the accuracy of this approach is virtually identical to that obtained using 
the two-point 5th-order Hermitian interpolation method. That it can accommodate slightly larger 
step sizes (up to ten minutes longer than the two-point 5th-order Hermitian interpolation method) 
can be attributed to its ability to fit a non-linear acceleration profile between bracketing points by 
using four points. This four-point method has the advantage that files can be 30% smaller than for 
the two-point 5th-order Hermitian interpolation method without substantial loss of accuracy, but 
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as will be demonstrated later, the requirement for even step size prevents implementation of best 
practices for accommodating ephemeris discontinuities in position, velocity and/or acceleration. 

MEO Regime 

The selected interpolation methods were applied to spacecraft in the MEO regime. For this re-
gime, a 26578 km circular orbit inclined at 55° (GPS orbit) was selected. 

5th-Order Lagrange Polynomial Interpolation. Figure 15 and Figure 16 indicate that in order 
to meet the 50-meter accuracy goal, 5th-order Lagrange polynomial interpolation supports a step 
size not exceeding approximately 1350 seconds (22.5 minutes) for MEO ephemerides. 

Figure 15. MEO 5th-Order Lagrange Interpola-
tion (Median & Max Error) 

Figure 16. MEO 5th-Order Lagrange Interpola-
tion Error Distribution 

Two-Point, 3rd-Order Hermitian Interpolation. Figure 17 and Figure 18 indicate that in order 
to meet the 50-meter accuracy goal, two-point Hermitian 3rd-order interpolation supports a step 
size not exceeding approximately 1038 seconds (17 minutes) for MEO ephemerides. 

 

Figure 17. MEO 2-Point 3rd-Order Hermitian 
Interpolation (Median & Max Error) 

Figure 18. MEO 2-Point 3rd-Order Hermitian 
Interpolation Error Distribution 

Two-Point, 5th-Order Hermitian Interpolation. Figure 19 and Figure 20 indicate that for the 
50-meter accuracy goal, two-point 5th-Order Hermitian interpolation supports a step size as large 
as 4350 seconds (72.5 minutes) for MEO ephemerides. 
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Figure 19. MEO 2-Point 5th-Order Hermitian 
Interpolation (Median & Max Error) 

Figure 20. MEO 2-Point 5th-Order Hermitian 
Interpolation Error Distribution 

As in the GEO case, it can easily be concluded that the actual file size can shrink by a factor of 
more than three compared to the Hermitian 3rd-order interpolation for the same interpolation ac-
curacy. 

Four Evenly-Spaced Points, 5th-Order Hermitian Interpolation. Figure 21 and Figure 22 indi-
cate that for the 50-meter accuracy goal, four-point 5th-order Hermitian interpolation supports a 
step size as large as 4538 seconds (over 75 minutes) for MEO ephemerides. As in the GEO test 
case, the accuracy of this approach is similar to that obtained using the two-point 5th-order Her-
mitian interpolation method. 

Figure 21. MEO 4-Point Even Step 5th-Order 
Hermitian Interpolation (Median & Max Error) 

Figure 22. MEO 4-Point Even Step 5th-Order 
Hermitian Interpolation Error Distribution 

LEO Regime 

The selected interpolation methods were applied to spacecraft in the LEO regime. In order to 
fully stress the interpolation method accuracy, a 6578 km circular orbit inclined at 50° is selected 
for this test case. 

5th-Order Lagrange Polynomial Interpolation. Figure 23 and Figure 24 indicate that in order 
to meet the 50-meter accuracy goal, 5th-order Lagrange polynomial interpolation supports a step 
size not exceeding approximately 220 seconds (3.7 minutes) for LEO ephemerides.  
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Figure 23. LEO 5th-Order Lagrange Interpola-
tion (Median & Max Error) 

Figure 24. LEO 5th-Order Lagrange Interpola-
tion Error Distribution 

Two-Point, 3rd-Order Hermitian Interpolation. Figure 25 and Figure 26 indicate that in order 
to meet the 50-meter accuracy goal, two-point Hermitian 3rd-order interpolation supports a step 
size not exceeding approximately 180 seconds (3 minutes) for LEO ephemerides. 

 

Figure 25. LEO 2-Point 3rd-Order Hermitian In-
terpolation (Median & Max Error) 

Figure 26. LEO 2-Point 3rd-Order Hermitian 
Interpolation Error Distribution 

Two-Point, 5th-Order Hermitian Interpolation. Figure 27 and Figure 28 indicate that for the 
50-meter precision goal, two-point 5th-Order Hermitian interpolation supports a step size as large 
as 660 seconds (eleven minutes) for LEO ephemerides. 

  



 10

Figure 27. LEO 2-Point 5th-Order Hermitian In-
terpolation (Median & Max Error) 

Figure 28. LEO 2-Point 5th-Order Hermitian 
Interpolation Error Distribution 

As in the GEO case, it can easily be concluded that the actual file size can shrink by a factor of 
more than three compared to the Hermitian 3rd-order interpolation for the same interpolation ac-
curacy. 

Four Evenly-Spaced Points, 5th-Order Hermitian Interpolation. Figure 29 and Figure 30 indi-
cate that for the 50-meter accuracy goal, four-point 5th-Order Hermitian interpolation supports a 
step size as large as 645 seconds (almost eleven minutes) for LEO ephemerides. 

Figure 29. LEO 4-Point Even Step 5th-Order 
Hermitian Interpolation (Median & Max Error) 

Figure 30. LEO 4-Point Even Step 5th-Order 
Hermitian Interpolation Error Distribution 

As in the GEO test case, the accuracy of this approach is similar to that obtained using the 
two-point 5th-order Hermitian interpolation method.  

GTO Regime 

The selected interpolation methods were applied to spacecraft in the GTO regime. For these 
tests, a spacecraft in a 6578 x 42164 km Geosynchronous Transfer Orbits (GTO) was selected. 
Since launches to this orbit are common from Cape Canaveral, a 28.5° orbit inclination is select-
ed. 

5th-Order Lagrange Polynomial Interpolation. Figure 31 and Figure 32 indicate that in order 
to meet the 50-meter accuracy goal, 5th-Order Lagrange polynomial interpolation supports a step 
size not exceeding approximately 125 seconds (2 minutes) for GTO ephemerides. 
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Figure 31. GTO 5th-Order Lagrange Interpola-
tion (Median & Max Error) 

Figure 32. GTO 5th-Order Lagrange Interpolation 
Error Distribution 

Two-Point, 3rd-Order Hermitian Interpolation. Figure 33 and Figure 34 indicate that in order 
to meet the 50-meter accuracy goal, two-point Hermitian 3rd-order interpolation supports a step 
size not exceeding approximately 150 seconds (2.5 minutes) for GTO ephemerides. 

Figure 33. GTO 2-Point 3rd-Order Hermitian In-
terpolation (Median & Max Error) 

Figure 34. GTO 2-Point 3rd-Order Hermitian 
Interpolation Error Distribution 

Two-Point, 5th-Order Hermitian Interpolation. Figure 35 and Figure 36 indicate that for the 
50-meter accuracy goal, two-point 5th-Order Hermitian interpolation supports a step size as large 
as 390 seconds (6.5 minutes) for GTO ephemerides. 
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Figure 35. GTO 2-Point 5th-Order Hermitian 
Interpolation (Median & Max Error) 

Figure 36. GTO 2-Point 5th-Order Hermitian 
Interpolation Error Distribution 

As in the GEO case, it can easily be concluded that the actual file size can shrink by a factor of 
more than three compared to the Hermitian 3rd-order interpolation for the same interpolation ac-
curacy. 

Four Evenly-Spaced Points, 5th-Order Hermitian Interpolation. Figure 37 and Figure 38 indi-
cate that for the 50-meter accuracy goal, four-point 5th-Order Hermitian interpolation supports a 
step size as large as 340 seconds (5.5 minutes) for GTO ephemerides. 

Figure 37. GTO 4-Point Even Step 5th-Order 
Hermitian Interpolation (Median & Max Error) 

Figure 38. GTO 4-Point Even Step 5th-Order 
Hermitian Interpolation Error Distribution 

As in the GEO test case, the accuracy of this approach is similar to that obtained using the 
two-point 5th-order Hermitian interpolation method. Notably, however, it is worse in both this 
GTO case and the previous LEO case. The authors conjecture that perhaps the rapid change in 
acceleration due to the LEO and GTO cases is best accommodated by not attempting to fit 
through more than one time interval. 

EPHEMERIS STEP SIZE CONTROL VIA REGULARIZED TIME 

It has been demonstrated that interpolation for circular orbits exhibits good, uniform perfor-
mance. However, the GTO case has shown that highly-eccentric orbits present a problem for all 
interpolators considered and that small step sizes must be used to ensure that the overall accuracy 
goal of 50 meters is met. But as noted earlier, only one of the four examined interpolation meth-
ods (Four-Point Even Step 5th-Order Hermitian) requires the time step size to be constant 
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throughout the ephemeris. The other three methods have no such restriction. Accordingly, the 
well-known concept of “regularized time” (using the Sundman transformation) is examined.6 

5th-Order Lagrange Polynomial Interpolation 

Figure 39 and Figure 40 indicate that in order to meet the 50-meter accuracy goal, 5th-order 
Lagrange polynomial interpolation supports an angular step size not exceeding approximately 
3.2° for GTO ephemerides using a regularized time approach. 

Figure 39. GTO Sundman 5th-Order Lagrange 
Interpolation (Median & Max Error) 

Figure 40. GTO Sundman 5th-Order Lagrange 
Interpolation Error Distribution 

Two-Point, 3rd-Order Hermitian Interpolation 

Figure 41 and Figure 42 indicate that in order to meet the 50-meter accuracy goal, two-point 
Hermitian 3rd-order interpolation supports an angular step size not exceeding approximately 3.8° 
for GTO ephemerides using a regularized time approach. 

Figure 41. GTO Sundman 2-Point 3rd-Order 
Hermitian Interpolation (Median & Max Error) 

Figure 42. GTO Sundman 2-Point 3rd-Order 
Hermitian Interpolation Error Distribution 

Two-Point, 5th-Order Hermitian Interpolation 

Figure 43 and Figure 44 indicate that for the 50-meter accuracy goal, two-point 5th-Order 
Hermitian interpolation supports an angular step size not exceeding approximately 10.5° for GTO 
ephemerides using a regularized time approach. 
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Figure 43. GTO Sundman 2-Point 5th-Order 
Hermitian Interpolation (Median & Max Error) 

Figure 44. GTO Sundman 2-Point 5th-Order 
Hermitian Interpolation Error Distribution 

As in the GEO case, it can easily be concluded that the actual file size can shrink by a factor of 
more than three compared to the Hermitian 3rd-order interpolation for the same interpolation ac-
curacy using a regularized time approach. 

ADDITIONAL DISCUSSION AND RECOMMENDED PRACTICES 

Above results notwithstanding, an important consideration is the precision of the supplied 
ephemeris. Another important factor is how to accommodate discontinuities in the ephemeris. 
Discontinuities can occur in spacecraft position (due to ephemeris “joining”), velocity (due to 
impulsive maneuver modeling, and acceleration (due to perturbations step functions). Two best 
practices that handle such uncertainties are to (1) use a two-point interpolation method that ac-
commodates unevenly-spaced ephemeris points, and (2) ensure that the ephemeris includes posi-
tional information at each discontinuity boundary. 

"Discontinuities" in position and/or velocity can and do occur when two ephemerides are 
joined together. When interpolating across the former boundary, a small Gibbs’ effect (ringing) 
due to under-sampling has been observed in the resultant values relative to the true ephemeris. 
Interpolation methods that require more than two node points are likely to be more susceptible to 
this issue. Such an effect can then manifest itself in analysis end-products (e.g., artifacts in the sea 
surface topography of altimetric missions). One method for removing such artifacts is to overlap 
the two ephemerides (e.g., one orbit revolution of overlap) to be joined and then employ a 
“smoothing function” to compute a weighted average on each side of the terminus. 

Fortunately for high-fidelity spacecraft motion modeling, natural discontinuities are not typi-
cally seen until the second derivative of position (acceleration). These discontinuities can arise 
from the introduction of finite burns, step-function change to solar perturbations (i.e., umbral 
crossings) or drag forces (e.g., deorbit device inflation). The Hermitian interpolation methods 
employ a linear variation to second derivatives (acceleration), and if such discontinuities occur in 
between the supplied ephemeris time points, this will undoubtedly affect interpolation perfor-
mance.  

One should also consider the time scale used as the independent variable in the ephemeris. For 
example, time intervals between UTC epochs are not necessarily uniform in the presence of a 
leap second.  Using a time reference such as International Atomic Time (TAI) or other uniform 
time scales can circumvent this problem. 
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Another important consideration is the “terminal effect” which occurs when trying to interpo-
late at the beginning or end of the supplied ephemeris. “Terminal effects” denote that the error is 
larger at the ends of the ephemeris, usually by an order of magnitude, because the information at 
ephemeris endpoints is one-sided. This effect may be mitigated by relying upon two-point inter-
polation schemes. 

STEP SIZE “RULES-OF-THUMB” 

Previously, it has been advocated that ephemeris step size can be selected using several rules-
of-thumb, as follows7: 

It is important that each ephemeris table be created so that interpolation of the table 
differs little from the value that would have been computed using SGP4 with the TLE di-
rectly. Typically, 90 points per orbit is needed for adequate interpolation of nearly circu-
lar orbits. For eccentric orbits, it is critical to have enough samples near perigee to do ac-
curate interpolation. A general rule is to use a step size that would produce 90 points per 
orbit for a circular orbit at the same perigee as the eccentric orbit. A maximum step of 
300 seconds was also adopted. Thus, LEOs generally use 60 sec steps while GEOs typi-
cally use 300 sec steps. 

Some similarly rough, method-specific rules-of-thumb may now be developed based upon the 
above findings. The results of this study can be captured as shown in Table 1, Table 2, Table 3, 
and Table 4. 

. 

Table 1. Maximum Step Size Meeting Accuracy Goal by Method & Orbit Regime (seconds). 

 

 

Table 2. Maximum Angular Step Meeting Accuracy Goal by Method & Orbit Regime (degrees). 

 

  

Orbit Regime: LEO GTO MEO GEO GTO w/Sundman

Lagrange 5th‐Order 220 126 1350 2550 N/A

Hermitian 3rd‐Order 2‐pt 191 149 1038 1950 N/A

Hermitian 5th‐Order 2‐pt 655 393 4350 7937 N/A

Hermitian 5th‐Order 4‐pt Even Step 655 348 4538 8586 N/A

Orbit Regime: LEO GTO MEO GEO GTO w/Sundman

Orbit Period (sec) 5310 37981 43122 86164 37981

Lagrange 5th‐Order 14.9 N/A 11.3 10.7 3.2

Hermitian 3rd‐Order 2‐pt 12.9 N/A 8.7 8.1 3.8

Hermitian 5th‐Order 2‐pt 44.4 N/A 36.3 33.2 10.9

Hermitian 5th‐Order 4‐pt Even Step 44.4 N/A 37.9 35.9 N/A
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Table 3. Number Steps Per Orbit Required by Method & Orbit Regime. 

 

 

Table 4. Approximate File Size for Two-Week Ephemeris by Method & Orbit Regime (Kb). 

 

 

The following observations can be made: 

1. The original “rules-of-thumb” are appropriately conservative and in-family with our 
observed empirical observations for the Lagrange 5th-order interpolation scheme; 

2. Ephemeris file size can be reduced by a factor of seven for highly-eccentric orbits 
when higher-fidelity interpolation scheme is combined with regularized time; 

The original rule of “90 points” per circular orbit corresponding to perigee altitude fails to 
capture the rapid motion at perigee. This can be readily seen by computing the circular orbit ve-
locity for our LEO case (7.78 km/s) versus the perigee velocity for our GTO case (10.24 km/s) 

EPHEMERIS NUMERICAL PRECISION 

Even the best interpolation method will not work well if based on insufficient information. 
The authors have observed an analyst tendency to select a limited numerical precision without 
considering its impact on ephemeris usability or derived interpolation accuracy. 

Figure 45 and Figure 46 examine, for each of the principle interpolation methods employed in 
this study, how the ephemeris step size which yields the maximum allowable interpolation error 
of 50 meters varies as a function of ephemeris parameter precision. In these figures, the position 
of each of the three Cartesian components of position and velocity was rounded to the nearest unit 
of precision shown in the bottom categories and then the step size which yielded a positional ac-
curacy of 50 meters was determined for each precision bin. 

AGI’s Center for Space Standards and Innovation (CSSI) has advocated that ephemerides be 
formatted such that time is specified to the nearest millisecond, position to a precision better than 
a millimeter, and velocity to better than 10-6 m/s. It can be observed that CSSI’s recommended 
precision specifications ensure that all interpolation methods easily meet the interpolation accura-
cy goals. It should be noted that decreasing precision even four places from the CSSI recommen-
dation was sufficient to give several of the interpolation methods difficulty. 

Orbit Regime: LEO GTO MEO GEO GTO w/Sundman

Lagrange 5th‐Order 25 302 32 34 113

Hermitian 3rd‐Order 2‐pt 28 255 42 45 95

Hermitian 5th‐Order 2‐pt 9 97 10 11 33

Hermitian 5th‐Order 4‐pt Even Step 9 110 10 11 N/A

Orbit Regime: LEO GTO MEO GEO GTO w/Sundman

Lagrange 5th‐Order 650 1136 106 56 424

Hermitian 3rd‐Order 2‐pt 749 960 138 73 204

Hermitian 5th‐Order 2‐pt 312 520 47 26 71

Hermitian 5th‐Order 4‐pt Even Step 218 411 32 17 N/A
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Figure 45. GEO Step Size Ensuring 50 m Interpola-
tion Accuracy v. Ephemeris Precision 

Figure 46. LEO Step Size Ensuring 50 m In-
terpolation Accuracy v. Ephemeris Precision 

COVARIANCE INTERPOLATION 

It is a common analysis requirement to be able to interpolate covariance matrices within the 
satellite ephemeris files. While it is tempting to simply perform a linear or polynomial fit of each 
covariance matrix element, such an approach likely will produce non-symmetric, negative-
definite (invalid) covariance matrices that yield non-orthogonal ellipsoids. Fortunately, a number 
of suitable alternative methods have been devised to circumvent this problem. These methods 
consist of two basic approaches. 

 

Figure 47. Graphical Depiction of Eigenmorphing Covariance Interpolation  
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“Eigenmorphing” 

In the first covariance interpolation approach, a weighted-average blending between two 
bounding nodes can be accomplished.8, 9 The authors have coined the phrase eigenmorphing for 
one such technique. First, the covariance matrices on either side of the time point of interest are 
subjected to eigenvector/eigenvalue decomposition, and the eigenvalues (ellipsoid semi-axes) are 
linearly transitioned across the interpolation step. The Euler axis and angle corresponding to the 
mapping from the initial to the final principle axes can then be determined. Then, by varying the 
eigenvectors smoothly about the Euler axis across the determined angle for this same step, the 
interpolated covariance may be reconstructed by pre- and post- multiplication of the matrix of 
eigenvectors with the diagonal matrix of eigenvalues. As shown in Figure 47, this results in 
smooth, realistic motion of the ellipsoid along the trajectory, which is appropriate for conjunction 
detection and visualization.  

State Transition 

In the second covariance interpolation approach, the state transition function can either be 
propagated from an integration bounding node or interpolated between the integration nodes to 
the time of interest.10 This state transition function can then map the covariance from an integra-
tion node to the requested time. This method has the disadvantage that it may not adequately ac-
count for additive process noise that actually occurs during that time interval because the state 
transition force model may omit important forces (maneuvers, drag, solar radiation pressure, etc.). 
But this method does have the advantage that the computationally costly eigenvalue/eigenvector 
decomposition process can be avoided. 

While this latter approach does work well in practice, there are several assumptions and limi-
tations. The eigenvectors are assumed to not rotate more than 90° between interpolation end-
points. The designations of major, medium and minor principle axes, although dynamically mov-
ing, remain the same between the end-points. The user must also check for “flipped” principle 
axis directions (i.e. 180° away). Finally, while the velocity covariance can be similarly decom-
posed and interpolated, an interpolation method for the off-diagonal elements of a 6x6 covariance 
matrix that link velocity and position uncertainties is not suitably addressed. 

CONCLUSIONS 

Ephemeris requirements, including ephemeris numerical precision and interpolation accuracy 
from a variety of interpolation methods, has been explored. For collision avoidance and radio-
frequency-interference analyses , the end goal is to minimize the positional error between each 
supplied ephemeris point. From that perspective, the Lagrange 5th-order and Hermitian 3rd-Order 
methods give acceptable performance, while the 5th-order methods provided very good perfor-
mance. If velocity information is not available, the standard Lagrange interpolation method is 
suitable as long as the ephemeris step size is sufficiently reduced. For highly-elliptical orbits, the 
non-uniform ephemeris point spacing based upon the Sundman transformation (regularized time) 
is a good way to minimize ephemeris file size (by as much as a factor of eight) while maintaining 
the desired accuracy. 

The user must decide what error metrics and working aspects of interpolation are best-suited 
to their needs when selecting an interpolation method. For this study, maximum error was adopt-
ed. 

Rather than adopting a single interpolation method or approach, a rules-based interpolation hi-
erarchy may be worthy of consideration. For example, the authors have also had good success in 
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the past designing an altitude-based table containing specified polynomial degrees (or alternative-
ly interpolation methods) that best minimize the maximum errors. 

FUTURE WORK 

Ephemeris and interpolation accuracy aspects potentially worthy of study include: (1) exami-
nation of interpolation accuracy across a variety of position, velocity and acceleration domains; 
(2) interpolation in different reference frames or orbital element sets; (3) interpolation across dis-
continuities; and (4) examination of more interpolation methods (e.g. taut splines, bi-cubic, Least-
Sum-Squares quadratic interpolation or higher-order Lagrange and Hermitian interpolations). 
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