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This work derives two interpolators to determine the intermediate covariance of a 
space object’s position.  Two considerations are given to the derivations.  The first 
is that the covariance matrix changes direction and shape with orbital motion as 
reflected in its first and second derivatives with respect to time.  In the absence of 
such derivatives, the second consideration is that covariance growth can be 
reasonably modeled by including data that is outside the immediate time interval of 
concern.  These two considerations incorporate orbital motion with time-associated 
covariance growth/reorientation to produce realistic intermediate covariance 
matrices while precisely matching them at the start and end of a given time 
interval.  The method is computationally simple, using matrix algebra with no 
eigenvalue or eigenvector determination.  Earth-Centered Inertial data (ECI) does 
not require a coordinate transformation for the first interpolator. 

 
 
Introduction 
 

An ephemeris file contains position and velocity information at discrete times 
along with their associated covariance matrices.  Collision analysis for off-discrete 
times requires position and velocity interpolation1,2.  Covariance data must also be 
interpolated for probability computations.  A simple linear transformation (morphing) 
of the positional covariance elements from one time to the next may not be sufficient 
if the rotation associated with orbital motion and other elements is not taken into 
account.  Such a linear transformation might match the covariance ellipsoid at the 
end points of a time interval while distorting the intermediate ellipsoid.  An example 
would be to visualize a broomstick rotated 90 degrees.  At the midpoint of the time 
interval, the intermediate ellipsoid should look like a broomstick rotated 45 degrees.  
If an improper transformation model (such as linear morphing) were used, then the 
intermediate ellipsoid would look like a circular disk; the axes would be 
shrinking/expanding rather than rotating.  The same problem arises in attitude 
interpolation and has been successfully handled using 2-point osculating 
interpolation methods3.  Similarly, after examining numerous alternate methods, a 
recommended approach to three-dimensional covariance visualization uses 
eigenvalue-eigenvector decomposition4. 

 
 The purpose of this study is to derive and examine two covariance 
interpolators that account for orbital motion as well as growth and re-orientation 
without eigenvalue-eigenvector decomposition.  This study is only concerned with 
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propagated/predicted data and does not address measurement 
processing/updating.  The first method uses the first and second covariance 
derivatives with respect to time and then splines the data as outlined in Reference 
2.  The second method splines only the positional covariance matrices. 
 
 
Derivation 
 
 It is assumed that position (r), velocity (v), and their associated covariance 
data (P) are all in the Earth-Centered Inertial (ECI) frame.  The time interval between 
data sets is normalized to one (0 = τ = 1).  The data are represented as r0, v0, P0 at 
the beginning of the time interval and r1, v1, P1 at the end.  Because this derivation 
only involves first and second derivatives of non-linear motion, it is recommended 
that the time interval not exceed more than 15° of orbital motion.  The time interval 
should be carefully chosen to satisfy user accuracy requirements.  The positional 
quintic spline equation is defined as  
 

p τ( ) a0 a1 τ⋅+ a2 τ
2

⋅+ a3 τ
3

⋅+ a4 τ
4

⋅+ a5 τ
5

⋅+    .  (1) 
 

Given information of position (pa, pb), velocity (va, vb), and acceleration (aa, 
ab) at the beginning and end of a unitized time interval (0, 1) the coefficients can be 
computed from the equation 
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Rearranging terms, the coefficients become 
 

a0

a1

a2

a3

a4

a5





















pa

va

.5 aa⋅

10.− pa⋅ 10. pb⋅ 6. va⋅− 4. vb⋅− 1.5 aa⋅−+ .5 ab⋅+

15. pa⋅ 15. pb⋅− 8. va⋅+ 7. vb⋅+ 1.5 aa⋅ 1. ab⋅−+

6.− pa⋅ 6. pb⋅ 3. va⋅− 3. vb⋅− .5 aa⋅−+ .5 ab⋅+



















  (3) 
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Substituting the coefficients of Equation 3 into Equation 1, it is useful to regroup the 
terms based on the interval data such that  
 

 p τ( ) 6 τ
2

⋅ 3 τ⋅+ 1+( )− τ 1−( )3
⋅  pa⋅ τ

3
10 15 τ⋅− 6 τ

2
⋅+( )⋅  pb⋅+

              + τ− 3 τ⋅ 1+( )⋅ τ 1−( )3
⋅  va⋅ τ

3
− τ 1−( )⋅ 3 τ⋅ 4−( )⋅  vb⋅+

              + 
1−

2
τ

2
⋅ τ 1−( )3

⋅





aa⋅
1
2

τ
3

⋅ τ 1−( )2
⋅





ab⋅+
. (4) 

 
Because the nature of the interval data was never specified as an element, vector, 
or matrix, Equation 4 holds for all.  The bracketed terms of Equation 4 are scalars 
and need only be computed once for a given τ.  The same equation can then be 
used to determine an interpolated 3x1 position vector, 3x3 covariance matrix and/or 
a 6x6 covariance matrix.   
 
 The reader is cautioned that the time interval for Equation 4 is normalized, 
requiring the rates and accelerations to be scaled accordingly.  As an example, if 
the units associated with rate were kilometers per second and the time interval 
between consecutive data points was 50 seconds, then the velocity data would be 
scaled by 50 to produce (va, vb).  Acceleration data would be scaled by 502 to 
produce (aa, ab). 
 

In the absence of user-provided covariance time derivatives for orbital 
motion, they can be approximated using a simple two-body Keplerian model5.  The 
first time derivative of a 6x6 covariance P is given by 
 

dP
dt

F P⋅ P F
T

⋅+
     (5) 

where 
 

r x2 y2+ z2+      (6) 
 
and 
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   (7) 

 
The x, y, z elements of the position vector determine the magnitude r.  The 
gravitational parameter is µ.  Given a zero-indexed 6x6 covariance matrix P, the 
upper 3x3 (positional) covariance derivative becomes 
 

dP
dt

2 P0 3,⋅

P1 3, P0 4,+

P2 3, P0 5,+

P1 3, P0 4,+

2 P1 4,⋅

P2 4, P1 5,+

P2 3, P0 5,+

P2 4, P1 5,+

2 P2 5,⋅









   (8) 

 
The second time derivative of the 6x6 covariance P is given by 

 

 
d2P

dt2
dF
dt

P⋅ P
dF
dt

T
⋅+ F

dP
dt

⋅+
dP
dt

F
T

⋅+

   (9) 
 
The upper diagonal elements of the symmetric 3x3 positional covariance second 
derivative become 
 

 
d2P

dt2





0 0,

2 P3 3, F3 0, P0 0,⋅+ F3 1, P0 1,⋅+ F3 2, P0 2,⋅+( )⋅

  (10) 
 

 
d2P

dt2





0 1,

F3 0, F4 1,+( ) P0 1,⋅ P0 0, P1 1,+( ) F3 1,⋅+ 2 P3 4,⋅+ F4 2, P0 2,⋅+ F3 2, P1 2,⋅+

(11) 
 

 
d2P

dt2





0 2,

F3 0, F5 2,+( ) P0 2,⋅ P2 2, P0 0,+( ) F3 2,⋅+ 2 P3 5,⋅+ F3 1, P1 2,⋅+ F4 2, P0 1,⋅+

(12) 
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d2P

dt2





1 1,

2 P4 4, F3 1, P0 1,⋅+ F4 1, P1 1,⋅+ F4 2, P1 2,⋅+( )⋅

 (13) 
 

 
d2P

dt2





1 2,

P2 2, P1 1,+( ) F4 2,⋅ F4 1, F5 2,+( ) P1 2,⋅+ 2 P4 5,⋅+ F3 1, P0 2,⋅+ F3 2, P0 1,⋅+

(14) 
 

 
d2P

dt2





2 2,

2 P5 5, F3 2, P0 2,⋅+ F4 2, P1 2,⋅+ F5 2, P2 2,⋅+( )⋅

 (15) 
 
 
Alternate Derivation 
 
 If only the positional 3x3 covariance is available, then an alternate splining 
method is used.  The unitized time interval of interest remains (0 = τ = 1) but six 
consecutive data sets are required spanning (-2 = τ = 3).  The data/τ pairs are 
represented as (pa, -2), (pb, -1), (pc, 0), (pd, 1), (pe, 2), and (pf, 3).  It is 
recommended that the time interval not exceed more than 10 degrees of orbital 
motion.  Again, the time interval should be chosen to satisfy user accuracy 
requirements.  The alternate positional quintic spline equation is 
 

p τ( ) b0 b1 τ⋅+ b2 τ
2

⋅+ b3 τ
3

⋅+ b4 τ
4

⋅+ b5 τ
5

⋅+    .  (16) 
 

The coefficients can be computed from the equation 
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Rearranging terms, the coefficients become 
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  (18) 

 
Substituting the coefficients of Equation 18 into Equation 16, it is useful to regroup 
the terms based on the positional data points 
 

 p τ( ) 1−
120

τ⋅ τ 1−( )⋅ τ 2−( )⋅ τ 3−( )⋅ τ 1+( )⋅







pa⋅
1
24

τ⋅ τ 1−( )⋅ τ 2−( )⋅ τ 3−( )⋅ τ 2+( )⋅







pb⋅+

            +
1−

12
τ 1−( )⋅ τ 2−( )⋅ τ 3−( )⋅ τ 2+( )⋅ τ 1+( )⋅








pc⋅
1
12

τ⋅ τ 2−( )⋅ τ 3−( )⋅ τ 2+( )⋅ τ 1+( )⋅







pd⋅+

            +
1−

24
τ⋅ τ 1−( )⋅ τ 3−( )⋅ τ 2+( )⋅ τ 1+( )⋅





pe⋅
1

120
τ⋅ τ 1−( )⋅ τ 2−( )⋅ τ 2+( )⋅ τ 1+( )⋅





pf⋅+

 (19) 
 
The above equation can be used to determine an interpolated 3x3 covariance 
matrix over the interval (0 = τ = 1) using the six neighboring covariance matrices.  
Accuracy can be improved by rotating all matrices from the ECI frame to the 
Transverse-Normal-Other (TNW) frame where T is along the velocity vector, N is 
along the angular momentum vector, and W completes the right-hand system.  
Splining is performed in the TNW frame and the interpolated covariance matrix is 
then transformed back to the ECI frame. 
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Numerical Testing  
 
 The methods were tested for accuracy regarding geosynchronous (GEO), 
low-earth (LEO), Global Positioning System (GPS), and Molniya (MYA) orbits in the 
ECI frame.  The primary method was tested only in the ECI frame; the alternate 
method was tested in both the ECI and TNW frames.  The errors were smaller using 
the TNW frame, so only those results are shown.  The interpolated covariance was 
compared to the actual by examining the angle and magnitude differences between 
ellipsoid axes.   
 

TABLE 1.  Primary Method Maximum Errors for GEO 
Interval (minutes) Magnitude Error (%) Angle Error (degrees) 

15 0.11826 0.00054 
30 0.12088 0.00058 
45 0.17814 0.00079 
60 0.60204 0.00219 
75 1.95670 0.00713 
90 5.84920 0.02072 

 
 

TABLE 2.  Primary Method Maximum Errors for LEO 
Interval (minutes) Magnitude Error (%) Angle Error (degrees) 

2.0 0.21096 0.04481 
3.0 0.29865 0.10066 
4.0 0.33702 0.18040 
5.0 0.35375 0.28967 
6.0 0.39677 0.44146 
7.0 0.54304 0.66012 
8.0 0.72384 0.98600 
9.0 0.95474 1.48032 

 
 

TABLE 3.  Primary Method Maximum Errors for GPS 
Interval (minutes) Magnitude Error (%) Angle Error (degrees) 

5 0.19331 0.00246 
10 0.17852 0.00291 
15 0.18511 0.00239 
20 0.20788 0.00279 
25 0.38321 0.00607 
30 0.85673 0.01382 
35 1.73740 0.02744 
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TABLE 4.  Primary Method Maximum Errors for MYA 

Interval (minutes) Magnitude Error (%) Angle Error (degrees) 
2 0.38521 0.00311 
4 0.38305 0.00368 
6 0.41066 0.00393 
8 0.40671 0.00393 

10 0.43217 0.00393 
12 0.42818 0.00394 
14 0.92876 0.00394 
16 2.05050 0.00861 

 
Tables 1-4 show that the primary method’s maximum error can be held below one 
percent if the change in true anomaly is less than or equal to 15°. 
 
 

TABLE 5.  Alternate Method Maximum Errors for GEO 
Interval (minutes) Magnitude Error (%) Angle Error (degrees) 

15 0.1024 0.000555 
30 0.255 0.0013661 
45 1.8949897 0.0093176 
60 9.9146719 0.05130088 

 
 

TABLE 6.  Alternate Method Maximum Errors for LEO 
Interval (minutes) Magnitude Error (%) Angle Error (degrees) 

2.0 0.20792 0.03321 
2.5 0.24517 0.04134 
3.0 0.34983 0.07963 
3.5 0.36042 0.18367 
4.0 0.39241 0.39608 
4.5 0.62742 0.79436 
5.0 1.16595 1.48035 

 
 

TABLE 7.  Alternate Method Maximum Errors for GPS 
Interval (minutes) Magnitude Error (%) Angle Error (degrees) 

5 0.09494 0.0020859 
10 0.10354 0.0016646 
15 0.13112 0.0026841 
20 0.32133 0.012792 
25 0.95457 0.048255 
30 2.7846 0.14123 
35 6.7018 0.34573 
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TABLE 8.  Alternate Method Maximum Errors for MYA 

Interval (minutes) Magnitude Error (%) Angle Error (degrees) 
2 0.42501 0.0032767 
4 0.39319 0.0035228 
6 0.4098 0.0039264 
8 0.96829 0.0085885 

10 3.5194 0.030092 
12 10.0499 0.081608 

 
As expected, the alternate method did not perform as well as the primary. 

Tables 5-8 show that the alternate method’s maximum error can be held below one 
percent if the change in true anomaly is less than or equal to 10°. It is still useful 
when 3x3 covariance information is the only data available, albeit with smaller time 
intervals.   
 
 For the limited number of test cases, the interpolated 3x3 covariance 
matrices were always positive definite.  An area for future study is to prove that 
positive definiteness is preserved with these methods. 
 
Conclusion 
 

Two covariance interpolators were derived for propagated ephemerides that 
do not involve eigenvalue or eigenvector computations.  The primary method uses 
the first and second derivatives of the covariance matrix to produce a quintic spline.  
In the absence of such derivatives, the alternate method approximates covariance 
behavior in the TNW frame by including data that is outside the immediate time 
interval of concern.  The methods use only simple matrix algebra.  It remains to be 
proven that the interpolated covariance is always positive definite. 
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